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Abstract Shiga toxin (Stx) 1 binds to the glycosphingolipid
(GSL) globotriaosylceramide (Gb3Cer/CD77) and injures
human endothelial cells. In order to gain insight into Stx1-
induced cellular impairment, we analysed in detail the
molecular heterogeneity of Stx1 receptors in two endothelial
cell lines differing in their Stx1-sensitivity. We observed a
moderate sensitivity to Stx1 of human brain microvascular

endothelial cells (HBMECs, CD50>200 ng/ml), but a
considerably higher mortality rate in cultures of EA.hy 926
cells, a cell line derived from human umbilical vein
endothelial cells (CD50 of 0.2 ng/ml). Immunofluorescence
microscopy demonstrated the presence of Gb3Cer in both
cell lines, but showed an enhanced content of Gb3Cer in EA.
hy 926 cells. Solid phase overlay binding assays of isolated
GSLs combined with nanoelectrospray ionization quadru-
pole time-of-flight mass spectrometry demonstrated a bal-
anced proportion of Gb3Cer and globotetraosylceramide
(Gb4Cer) in HBMECs, but an increase of Gb3Cer and
absence of Gb4Cer in EA.hy 926 cells. Gb3Cer species with
C24:1/C24:0 fatty acids were found to dominate over those
with C16:0 fatty acids in EA.hy 926 cells, but were similarly
distributed in HBMECs. Reverse transcriptase polymerase
chain reaction indicated the concomitant presence of Gb3Cer
and Gb4Cer synthases in HBMECs, whereas EA.hy 926
cells expressed Gb3Cer synthase, but completely lacked
Gb4Cer synthase. This deficiency, resulting in the accumu-
lation of Gb3Cer in EA.hy 926 cells, represents the most
prominent molecular reason that underlies the different Stx1
sensitivities of HBMECs and EA.hy 926 endothelial cells.
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ESI Q-TOF-
MS

electrospray ionization quadrupole time-of-
flight mass spectrometry

GSL(s) glycosphingolipid(s)
HBMECs human brain microvascular endothelial cells
HPTLC high-performance thin-layer chromatography
HUVECs human umbilical vein endothelial cells
RT-PCR reverse transcriptase polymerase chain

reaction
Stx Shiga toxin

Introduction

Shiga toxins (Stxs), also referred to as verotoxins, are AB5

holotoxins, which have been divided into two families,
Stx1 and Stx2, each of which consists of the major Stx type
and several variants [1, 2]. The B-subunit pentamer of Stx1
binds to its receptor globotriaosylceramide (Gb3Cer/CD77)
[3] on the surface of susceptible endothelial cells [4]. Stxs
are internalized and undergo retrograde transport through
the Golgi apparatus to the endoplasmic reticulum [5]. After
translocation into the cytosol, the A-subunit is cleaved into
an enzymatically active A1 fragment (27.5 kDa) and a
small A2 fragment (4.5 kDa). The A1 fragment possesses
the rRNA N-glycosidase activity [6] and depurinates an
adenosine at position 4324 of the 28S ribosomal RNA
causing death of the target cell through inhibition of protein
synthesis [7].

Glycosphingolipids (GSLs), amphipathic molecules
composed of a hydrophilic oligosaccharide chain and a
hydrophobic ceramide part [8, 9], are located primarily in
the outer leaflet of the plasma membrane of animal cells.
Their oligosaccharide chains spread in the aqueous envi-
ronment at the cell surface, and this makes them excellent
candidates for cell surface recognition molecules [10–12].
Consequently, GSLs play important biological roles in the
pathophysiology of many infections and serve as receptors for
bacteria [13–15] and bacterial toxins including Stxs [4, 16].

To gain insight into the Stx1-mediated impairment of the
vascular endothelium, we used human brain microvascular
endothelial cells (HBMECs) [17] and EA.hy 926 cells, a
cell line derived by fusing human umbilical vein endothe-
lial cells (HUVECs) to the human lung epithelial cell line
A549 [18]. HBMECs, which form the barrier that protects
the brain from microbes and toxins circulating in the blood
[19, 20], have been employed in numerous studies as target
cells for pathogen invasion [21, 22], fimbriae-mediated
bacterial interactions [23], and bacterial toxins [24, 25]. EA.
hy 926 cells, which represent “immortalized” HUVECs
[26], have been proved to be a reliable model for in vitro
studies of certain aspects of angiogenesis [27, 28], vascular
inflammation [29], and toxin-mediated cell cycle arrest [24].

Binding of Stx to Gb3Cer on endothelial cells is
postulated to be the critical event triggering the vascular
injury caused by Stx-producing Escherichia coli [2, 20].
Though the importance of GSLs as receptors for Stxs is
well documented [4], the GSL composition of endothelial
cells has generally received low attention. In the best
characterized HUVECs [30, 31], globo-series neutral GSLs
were the major GSLs [32, 33] as in primary human brain
microvascular endothelial cells [34]. Upon stimulation with
inflammatory mediators, an enhanced expression of Gb3Cer
has been reported for HUVECs [35] and primary human
brain endothelial cells from various sources [36–39].

Although the HBMECs, established by Kim and
colleagues [17], and EA.hy 926 cells [18] have been
extensively studied, no information is available about their
GSLs. In this study, the molecular basis for the differential
cytotoxic action of Stx1 on HBMECs and EA.hy 926 cells
was investigated. Initially, we started with the immunoflu-
orescence microscopic investigation of the globo-series
GSLs Gb3Cer and globotetraosylceramide (Gb4Cer), where-
by Gb4Cer represents the elongation structure of Gb3Cer
synthesized by β1,3-N-acetylgalactosaminyltransferase. We
then explored Stx1-mediated cytotoxicity in both cell lines.
To gain insights into the molecular structures responsible for
the differences in Stx1 susceptibility, we examined the
expression of receptor-relevant glycosyltransferases by
means of reverse transcriptase polymerase chain reaction,
and the GSL profiles and Gb3Cer content by solid phase
binding assays. Finally, the Stx1-binding Gb3Cer species
were further structurally characterized by mass spectrometry.
Our findings provide an understanding of the basis of
increased sensitivity of the HUVEC-derived EA.hy 926 cell
line to Stx1, which has not been reported before.

Materials and methods

Cell cultures

HBMECs [17] and HUVEC-derived EA.hy 926 cells [18]
were maintained as described previously [24]. For large
scale production, cells were propagated on collagen pre-
coated Cytodex 3 microcarriers (Amersham Biosciences
AB, Uppsala, Sweden) in spinner vessels [33, 40]. Briefly,
inocula for 1 l volumes were prepared using the 30th
passage of HBMECs and the 13th passage of EA.hy 926
cells in 200 ml spinner cultures containing 3 g/l of Cytodex
3 microcarriers. Scale-up was performed in a 1 l membrane
stirred SuperSpinner [41]. The beads covered with endo-
thelial cells were washed twice with phosphate buffered
saline (PBS) before extraction of GSLs.
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Preparation of GSL extracts from endothelial cells

Endothelial cells were extracted with methanol, chloroform/
methanol (1/2, v/v), chloroform/methanol (1/1, v/v), and
chloroform/methanol (2/1, v/v). The combined extracts of
HBMECs and EA.hy 926 cells, respectively, were dried and
phospholipids were saponified with aqueous 1 M NaOH for
1 h at 37°C. After neutralization with 10 M HCl, the
samples were dialyzed against deionized water and dried.
The extracts were adjusted to defined volumes of chloroform/
methanol (2/1, v/v) corresponding to 1×105 cells/µl.

Purification of Stx1

Stx1 was purified as described previously [42] from E. coli
C600 strain lysogenised with bacteriophage H19J (E. coli
C600(H19J)) which encodes Stx1. Briefly, Stx1 was eluted
from agar plates exhibiting confluent lysis after inoculation
with the bacteriophage, precipitated with 50% ammonium
sulfate, applied to a Sepharyl S200 column, and fractions
with cytotoxic activity in the molecular range between 30
and 80 kDa were concentrated. Stx1 was further purified by
an Affi-Gel Blue column, chromatofocusing and high
performance liquid chromatography. Purity of the Stx1
preparation was monitored by SDS-PAGE.

Cytotoxicity and cell viability

Direct measurement of Stx1 cytotoxicity was performed in
96-well plates (Corning Inc., Corning, NY, USA) seeded
with 1×104/well of HBMECs or 3×104/well of EA.hy 926
cells. After overnight incubation, 100 µl of 10-fold
dilutions of Stx1 preparation in cell culture medium
(starting concentration of 200 ng/ml) or 100 µl of the
medium as a control were added to the confluent cell
monolayers in triplicate and incubated for 3 days at 37°C in

a 5% CO2-air atmosphere. The cells were then fixed with
70% ethanol, stained with 10% Giemsa and examined
microscopically for cytotoxicity. The toxin concentration,
which caused a cytotoxic effect in 50% of the cells was
defined as a 50% cytotoxic dose (CD50).

The reduction of 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-
2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1; Roche
Diagnostics GmbH, Penzberg, Germany) to formazan served
as an indirect measurement of cell viability. The WST-1 assay
was performed as described previously [24], with minor
modifications. Briefly, after overnight incubation the cells
grown in 96-well plates were exposed to 10-fold dilutions of
Stx1 preparation (concentrations as above) and incubated for
54 h. Ten µl of WST-1 solution (5 mg/ml in PBS) were
added to each well, incubated for 3 h at 37°C, and 100 µl of
lysis buffer (20% (w/v) SDS in 50% N,N-dimethyl formam-
ide, pH 4.7) were added to the cells overnight. The
absorbance was measured at 450 nm with a microplate
reader (OpsysMR absorbance reader, equipped with software
revelation 4.21; Dynex Technologies, Worthing, West
Sussex, UK).

Anti-GSL antibodies and anti-Stx1 antibodies

All polyclonal rabbit and chicken antibodies were generated
according to the method of Kasai et al. [43]. The preparation
and specificities of the antibodies against various neutral
GSLs and gangliosides have been reported in previous
publications [44, 45], and the related references are listed in
Table 1. Stx1 was detected with the mouse IgG1 monoclo-
nal antibody 109/4-E9b (Sifin, Berlin, Germany).

Immunofluorescence microscopy

HBMECs and EA.hy 926 cells were seeded in 4-well
polystyrene chamber slides (Tissue culture chambers,

Table 1 Monoclonal and polyclonal antibodies employed for the identification and structural characterization of GSLs from HBMECs and EA.hy
926 cells

Name Structure Referencesa

Lc2Cer Galβ1-4Glcβ1-1Cer [33, 40]
Gb3Cer Galα1-4Galβ1-4Glcβ1-1Cer [33, 40, 42, 72]
Gb4Cer GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer [33, 42, 72]
Gg3Cer GalNAcβ1-4Galβ1-4Glcβ1-1Cer [33, 40, 50]
Gg4Cer Galß1-3GalNAcβ1-4Galβ1-4Glcβ1-1Cer [33, 40, 72, 73]
nLc4Cer Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-1Cer [33, 40, 49, 72]
GM3 Neu5Acα2-3Galβ1-4Glcβ1-1Cer [33, 40, 72, 74]
GM2 GalNAcβ1-4(Neu5Acα2-3)Galβ1-4Glcβ1-1Cer [72, 74]

All antibodies are polyclonal chicken IgY antibodies with the exception of anti-Gg3Cer (2D4, mouse monoclonal IgM) and anti-Gg4Cer antibody
(rabbit polyclonal IgG).
a References concerning the antibodies used in this study.
The nomenclature of the GSLs follows the IUPAC-IUB recommendations 1997 [75].
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Permanox®, no. 177437; Nunc GmbH, Wiesbaden-Biebrich,
Germany) in amounts of 1.5×104 and 2×104 cells/chamber,
respectively, and grown for 48 h until subconfluence.
Immunohistochemistry with primary chicken anti-GSL anti-
bodies and secondary dichlorotriazinylamino fluorescein
(DTAF) labeled rabbit anti-chicken IgY antibodies (Dianova,
Hamburg, Germany) was performed following published
protocols [33, 40]. The detection of the Stx1 binding was
performed by consecutive incubations of the cells with Stx1
(0.2 µg/ml in 3% bovine serum albumin (BSA) in PBS),
monoclonal mouse IgG1 anti-Stx1 antibody 109/4-E9b
(2 µg/ml in 3% BSA in PBS), secondary DTAF-labeled
goat anti-mouse IgG antibody (1:40) (Dianova) and 4′,6-
diamidine-2-phenylindole-dihydrochloride (DAPI) solution
according to the protocol for anti-GSL antibodies [33, 40].
Negative controls without anti-GSL antibodies and Stx1
were processed in parallel.

The cell monolayers were embedded in 20% Mowiol
(Calbiochem, Darmstadt, Germany) and bound DTAF-
labeled antibodies as well as stained nuclei were visualized
under fluorescence microscope (Axiophot, Zeiss, Göttingen,
Germany), original magnification ×400 (objective lens Plan-
NEOFLUAR, numerical aperture 0.75), with filter sets
adequate to the maxima of absorption/emission of DTAF
(495/528 nm) and of DAPI (368/488 nm). The fluorescence
was recorded with an AxioCam CCD camera (Zeiss),
documented with AxioVision 3.1 (Zeiss, 1,300×1,030 pixel)
and processed with Adobe Photoshop software (Adobe
Systems Inc.).

Reverse transcriptase polymerase chain reaction (RT-PCR)
for glycosyltransferases

Total cellular RNAwas isolated from 1×106 endothelial cell
aliquots using the RNeasy Mini kit (Qiagen, Hilden,
Germany; no. 74106) according to the supplier’s protocol
and transcribed by moloney murine leukemia virus (M-
MLV) reverse transcriptase. First-strand cDNA synthesis was
performed using the SuperScriptTM II RT kit (Invitrogen,
Karlsruhe, Germany; no. 18064-014). Primers were synthe-
sized by Operon Biotechnologies, Inc. (Köln, Germany). The
primers used were as follows: β1,4-galactosyltransferase
(β1,4-GalT, EC 2.4.1.-; GenBank accession no. AF097159),
sense 5′-AACGGTACAGATTATCCCGAAGG-3′, antisense
5′-TGGAGCTAACTCTGGCATGAGG-3′ [38]; α1,4-galac-
tosyltransferase (α1,4-GalT, EC 2.4.1.228; GenBank acces-
sion no. AJ245581), sense 5′-ATGTCCAAGCCCCCCGAC
CTC-3′, antisense 5′-GAGCTGCCCTTTCTCCTTGGG-3′
[46]; β1,3-N-acetylgalactosaminyltransferase (β1,3-Gal-
NAcT, EC 2.4.1.79; GenBank accession no. Y15062), sense
5′-ATGGCCTCGGCTCTCTGGACT-3′, antisense 5′-
TTGTAGTGGGGAAGGCTGAGGT-3′. The primers were
designed with the Oligonucleotide Properties Calculator

freeware (http://www.basic.northwestern.edu/biotools/
oligocalc.html). An aliquot of 2.5 µl of the cDNA
preparation was added to the PCR mixture containing
2.5 µl of 10-fold-concentrated polymerase synthesis buffer
Y, 0.75 µl MgCl2 (25 mM), 5 µl of enhancer solution, 0.5 µl
dNTP mix (10 mM each), 0.5 µl (100 mM) of each primer
and 0.4 µl (2 U) of Taq DNA polymerase (all reagents from
Peqlab, SAWADY kit no. 01-1040) and filled up with
distilled water to a final volume of 25 µl. After DNA
denaturing at 94°C for 3 min 30 s, PCR was performed in 30
cycles of 94°C for 15 s, 62°C (β1,4-GalT) or 64°C (α1,4-
GalT and β1,3-GalNAcT) for 30 s, 72°C for 1 min, with a
final extension at 72°C for 10 min.

Forty percent aliquots from total RNA after RT-PCRs
were subjected to electrophoresis in 1% agarose gels,
followed by photographic recording of the ethidium bromide
stained gels. Fluorescence was measured using a Fluor-Imager
ChemiDoc® XRS (Bio-Rad, München, Germany) and docu-
mented with Quantity One 4.5.1 (Bio-Rad) and Photoshop
software (Adobe).

Reference GSLs

A mixture of neutral GSLs, comprising monohexosylceramide
(MHC), lactosylceramide (Lc2Cer), Gb3Cer, and Gb4Cer, was
prepared from human erythrocytes. Neutral GSL references of
neolacto- and ganglio-series were from human granulocytes
and murine MDAY-D2 cell line, respectively [47]. A gangli-
oside mixture containing GM3 was isolated from human
granulocytes as described [48]. Abbreviations and
corresponding structures of GSLs used in this study are
depicted in Table 1.

High-performance thin-layer chromatograhy (HPTLC)

GSLs were separated on glass-backed silica gel 60 precoated
HPTLC-plates (no. 5633; Merck, Darmstadt, Germany) in the
solvent chloroform/methanol/water (120/70/17, each by vol.,
with 2 mM CaCl2). Orcinol- and immunostained GSL bands
(see “HPTLC immunostaining”) were scanned with a CD60
scanner (Desaga, Heidelberg, Germany, software ProQuantR,
version 1.06.000). Bands were quantified in reflectance
mode at 544 nm (orcinol) and 630 nm (indolylphosphate)
with a light beam slit of 0.1×2 mm.

HPTLC immunostaining

The HPTLC immunodetection procedure using anti-GSL
antibodies and Gb3Cer-binding Stx1 in conjunction with
anti-Stx1 antibody was employed as previously described
[33, 42, 49]. All primary anti-GSL and alkaline phosphatase-
labeled secondary antibodies (Dianova) were used in 1:2000
dilutions. Stx1-mediated detection of Gb3Cer was performed
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with the anti-Stx1 monoclonal antibody 109/4-E9b (Sifin).
Bound secondary antibodies were visualized by color
development using 5-bromo-4-chloro-3-indolyl phosphate
p-toluidine salt (BCIP; Biomol, Hamburg, Germany).

Extraction of GSLs from HPTLC plates

The silica gel of anti-Gb3Cer, anti-Gb4Cer and Stx1-
detected GSL bands corresponding to 6×106 cells was
extracted with chloroform/methanol/water (30/60/8, each
by vol.) under sonication [50]. The supernatants from
threefold extractions were pooled, dried, redissolved in
methanol and analyzed by mass spectrometry without
further purification.

NanoElectrospray ionization quadrupole time-of-flight
mass spectrometry (nanoESI Q-TOF-MS)

The extracted GSL samples were analyzed in positive ion
mode by nanoESI Q-TOF-MS and low-energy collision-
induced-dissociation (CID) MS/MS using a Q-TOF mass
spectrometer (Micromass, Manchester, U.K.). After select-
ing the precursor ions of interest with the first quadrupole,
CID was performed to obtain fragment ions enabling
sequence analysis (for further details see [50, 51]). The
nomenclature introduced by Domon and Costello [52, 53]
was used for the assignment of the fragment ions.

Results

Immunohistochemical detection of GSLs in HBMECs
and EA.hy 926 cells

In order to determine the expression of lactosylceramide
(Lc2Cer, the precursor of Gb3Cer) and the globo-series
GSLs Gb3Cer and Gb4Cer (for structures see Table 1),
anti-GSL antibodies were used for immunofluorescence
microscopy of subconfluent HBMEC and EA.hy 926 cell
monolayers in parallel with the corresponding nuclear
stains. As shown in Fig. 1, anti-Lc2Cer, anti-Gb3Cer, and
anti-Gb4Cer as well as the Stx1 immunostains demonstrat-
ed moderate positive reactions in HBMECs. In contrast,
anti-Lc2Cer and anti-Gb3Cer as well as Stx1 immunostains
showed strong positive reactions in EA.hy 926 cells,
whereas the anti-Gb4Cer antibody gave a substantially
lower signal with these cells (Fig. 2) compared to HBMECs
(see Fig. 1). However, the Stx1 immunofluorescence stains
demonstrated a moderate and a high fluorescence intensity in
HBMECs and EA.hy 926 cells, respectively, consistent with
the different intensities of the anti-Gb3Cer staining in these
cell types. In all cases, parallel control cultures, incubated
with the secondary DTAF-labeled antibodies only, did not

stain. These results suggest an accumulation of Lc2Cer and
Gb3Cer along with the lack of Gb4Cer in EA.hy 926 cells.

Stx1-mediated cytotoxicity and reduced cell viability

To determine the impact of different Stx1 receptor
quantities in HBMECs and EA.hy 926 cells on the
cytotoxic potential of Stx1, serial dilutions of the toxin
(from 200 ng/ml to 0.2 pg/ml) were incubated with
confluent monolayers grown in 96-well microtitre plates.
HBMECs were refractory to the cytotoxic action of Stx1,
with a CD50 > 200 ng/ml. In contrast, EA.hy 926 cells
exhibited > 103-fold higher sensitivity to Stx1 (CD50 of
0.2 ng/ml). Cell viability (Fig. 3) declined after Stx1-
treatment in both lines. The mortality rate was considerably
increased in EA.hy 926 cell cultures as compared to
HBMECs (ca. 40 versus 80% viable cells, respectively)
over concentrations ranging from 0.2 to 200 ng/ml. The
concentrations of Stx1 required for 50% reduction of the
cell viability were 0.2 ng/ml in EA.hy 926 cells and
> 200 ng/ml in HBMECs. These results were in agreement

Fig. 1 Detection of neutral GSLs on HBMECs using indirect
immunofluorescence microscopy. Detection was performed with
anti-Lc2Cer (Lc2), anti-Gb3Cer (Gb3), and anti-Gb4Cer antibodies
(Gb4), followed by incubation with DTAF-labeled secondary anti-
body. Gb3Cer-bound Stx1 was detected with anti-Stx1 and DTAF-
labeled secondary antibody. Cell nuclei were stained with DAPI. Bars
represent 20 µm. IF: immunofluorescence microscopy. The GSL
structures are depicted in Table 1
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with the direct cytotoxicity measurements and pointed at
the higher concentration of Gb3Cer as the molecular basis
for the more pronounced sensitivity of EA.hy 926 cells to
Stx1.

RT-PCR analysis of glycosyltransferases in HBMECs
and EA.hy 926 cells

To characterize the reasons of the differential GSL
expression, HBMECs and EA.hy 926 cells (Fig. 4a and b,
respectively) were assayed for β1,4-GalT (Lc2Cer syn-
thase), α1,4-GalT (Gb3Cer synthase), and β1,3-GalNAcT
(Gb4Cer synthase) by RT-PCR. HUVECs, well known to
express Lc2Cer, Gb3Cer, and Gb4Cer [33], served as a
positive control (Fig. 4c) yielding amplicons of 912 bp
(β1,4-GalT), 175 bp (α1,4-GalT), and 125 bp (β1,3-
GalNAcT). The RT-PCR analyses of HUVECs’ glycosyl-
transferases reflect the cellular GSL profile with clear
evidence of Gb4Cer as the predominant GSL in these cells
[33]. The concomitant expression of Gb3Cer and Gb4Cer
synthases in HBMECs (Fig. 4a) is in agreement with the
presence of both GSLs as detected by immunofluorescence
microscopy. The most prominent difference between
HBMECs and EA.hy 926 cells was the lack of the β1,3-
GalNAcT transcript (Gb4Cer synthase) in EA.hy 926 cells
(Fig. 4b), consistent with the extremely weak detection of
Gb4Cer by immunofluorescence (see Fig. 2). The results
suggest that the absence of Gb4Cer, attributed to the lack of
β1,3-GalNAcT (Gb4Cer synthase), leads to enhancement
of Gb3Cer in EA.hy 926 cells.

Structural characterization of GSLs in HBMECs and EA.hy
926 cells by HPTLC immunodetection

To verify the preliminary evidence for a different content of
GSLs, especially an elevated concentration of Gb3Cer and
lack of Gb4Cer in EA.hy 926 cells, GSLs were isolated
from both cell lines and structurally characterized by
HPTLC analysis. Figure 5a shows the orcinol staining of
total GSL extracts from HBMECs and EA.hy 926 cells
compared to reference neutral GSLs from human eryth-

Fig. 3 Stx1-induced decline in cell viability of HBMECs and EA.hy
926 cells determined by cell viability assay. Microtitre plate grown
HBMECs (filled square) and EA.hy 926 cells (filled circle) were
treated for 54 h at 37°C with Stx1 concentrations as indicated. Cell
viability was determined using the WST-1-assay. Results represent the
mean and standard deviation of triplicate determinations and are
expressed as a percentage of untreated control cells

Fig. 4 Glycosyltransferases RNA expression in HBMECs and EA.hy
926 cells. Depicted are electrophoretically separated ethidium bromide-
stained PCR amplicons of glycosyltransferases target sequences. Total
RNA was assayed for the presence of Lc2Cer synthase (β1,4-GalT),
Gb3Cer synthase (α1,4-GalT), and Gb4Cer synthase (β1,3-GalNAcT)
using specific RT-PCR primers for the respective glycosyltransferases. a
HBMECs. b EA.hy 926 cells. c HUVECs as a control. The vertical
white lines indicate areas of noncontiguous lanes assembled

Fig. 2 Detection of neutral GSLs on EA.hy 926 cells using indirect
immunofluorescence microscopy. Detection was performed as de-
scribed in the legend to Fig. 1. Bars represent 20 µm. IF:
immunofluorescence microscopy. The GSL structures are depicted in
Table 1
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rocytes. The initial identification of neutral GSL structures
deduced from their chromatographic behaviour (subse-
quently confirmed by HPTLC immunostaining with spe-
cific antibodies) demonstrated the globo-series neutral
GSLs Gb3Cer and Gb4Cer as the predominant GSLs in
HBMECs, while Lc2Cer and Gb3Cer are the superior GSLs
in EA.hy 926 cells. HPTLC-scanning of the prevalent
orcinol-stained neutral GSL bands of HBMECs on a
percentage level demonstrated an almost equal ratio of
Gb3Cer and Gb4Cer (42 and 36%, respectively), and lesser
amounts of Lc2Cer (12%) and monohexosylceramide
(10%) (Fig. 5a). EA.hy 926 cells showed a substantial
relative increase of Gb3Cer (50%) and Lc2Cer (46%), but
diminished content of monohexosylceramide (4%) and the
lack of Gb4Cer (Fig. 5a). Thus, compared with HBMECs,
the overall and most important features of EA.hy 926 cells
are their enhanced expression of the Stx1 receptor Gb3Cer
and its precursor Lc2Cer, and the obvious absence of
Gb4Cer. These tentative structures were further verified by
HPTLC immunostaining. The anti-Lc2Cer, anti-Gb3Cer,
and anti-Gb4Cer immunostains are shown in Fig. 5b,c,
and d, respectively, indicating an approximate 3.4 fold
overexpression of Lc2Cer (b) and 2.5-fold overexpression
of Gb3Cer (c) in EA.hy 926 cells compared to HBMECs.
The absolute amounts of Gb3Cer accounted for 0.23 and
0.62 µg in 1×105 HBMECs and EA.hy 926 cells,
respectively. Only trace quantities of Gb4Cer are detectable
in EA.hy 926 cells (Fig. 5d). The corresponding overlay
assay with Stx1 confirmed enhanced expression of Stx1
receptor Gb3Cer in EA.hy 926 cells (Fig. 5e). Thus, the
neutral GSL expression determined by HPTLC correlated
with the data obtained by the immunofluorescence micros-
copy, and the Stx1 receptor expression further correlated
with the extent of the toxin-mediated cellular injury by a
panel of complementary analyses.

Antibodies were used to detect minor neutral GSLs and
gangliosides (see Table 1). In both cell lines, only traces of
nLc4Cer were detectable, whereas both lines were negative
for Gg3Cer and Gg4Cer (data not shown). The major
orcinol-detectable gangliosides in the chromatogram below
the neutral GSLs were identified as GM3 (prominent in EA.
hy 926 cells, Fig. 5a) and GM2 (elevated in HBMECs,
Fig. 5a).

Structural characterization of Stx1 receptors by nanoESI
Q-TOF-MS

Finally, the Gb3Cer species of the Stx1/anti-Stx1 immu-
nostained HPTLC bands of HBMECs and EA.hy 926 cells
(see Fig. 5e) were structurally characterized in detail by
nanoESI Q-TOF mass spectrometry. For this purpose, the
silica gel of immunopositive bands was scraped off the
plate, extracted and the GSLs in the extracts analysed by
mass spectrometry. The sodiated molecular ions obtained
by nanoESI Q-TOF-MS from the silica gel extracts of Stx1-
stained GSLs of HBMECs and EA.hy 926 cells are listed in
Table 2. The nanoESI Q-TOF mass spectra and the

Fig. 5 HPTLC immunodetection of neutral GSLs in lipid extracts
from HBMECs and EA.hy 926 cells. a Orcinol stain of HPTLC-
separated GSLs; corresponding HPTLC overlay assays with b
anti-Lc2Cer, c anti-Gb3Cer, d anti-Gb4Cer antibody, and e Stx1/anti-
Stx1-antibody. Bound antibodies were visualized with alkaline
phosphatase conjugated secondary antibodies and BCIP as a substrate.
GSL extracts of HBMECs and EA.hy 926 cells were chromatographed

together with neutral standard GSLs from human erythrocytes (Std).
Applied extracts correspond to 2×106 HBMECs and EA.hy 926 cells
in a and b and to 5×105 endothelial cells in c–e. Amounts of standard
GSLs were 20 µg in a and e, 5 µg in b and c, and 1 µg in d. Lc2:
Lc2Cer, Gb3: Gb3Cer, Gb4: Gb4Cer. The GSL structures are depicted
in Table 1. The vertical white lines indicate areas of noncontiguous
lanes assembled

Table 2 Major molecular ions identified in the nanoESI Q-TOF mass
spectra of Stx1-detected Gb3Cer species from HBMECs and EA.hy
926 cells and their proposed structures

[M+Na]+, m/z
HBMECsa

[M+Na]+, m/z
EA.hy 926 cellsa

Proposed structure

1,046.64 1,046.70 Gb3Cer (d18:1, C16:0)
1,130.74 1,130.80 Gb3Cer (d18:1, C22:0)
1,156.76 1,156.78 Gb3Cer (d18:1, C24:1)
1,158.80 1,158.79 Gb3Cer (d18:1, C24:0)

a Protonated molecular ions [M+H]+ detectable in the mass spectra of
Figs. 6 and 7 are not listed
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Fig. 6 NanoESI Q-TOF mass spectra of Stx1/anti-Stx1-detected
Gb3Cer species from HBMECs. The spectra were obtained from
crude HPTLC immunostain-derived silica gel extracts and recorded in
the positive ion mode. The corresponding overlay assay is shown in
the inset and percentage quotations represent the relative quantities of
Stx1-positive upper and lower Gb3Cer bands. a Mass spectrum of

Gb3Cer (see dotted rectangle in the inset). The molecular ions are
listed in Table 2. b MS/MS spectrum Gb3Cer (d18:1, C24:0) with m/z
1158.82. The arrow denotes the Gb3Cer precursor ion species selected
for CID. Y- and Z-type ions are marked with their corresponding m/z-
values. c Molecular structure and fragmentation scheme of Gb3Cer
(d18:1, 24:0). The fragment ions are listed in Table 3
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Fig. 7 NanoESI Q-TOF mass spectra of Stx1/anti-Stx1-detected
Gb3Cer species from EA.hy 926 cells. The spectra were obtained
from crude HPTLC immunostain-derived silica gel extracts and
recorded in the positive ion mode. The corresponding overlay assay
is shown in the inset and percentage quotations represent the relative
quantities of Stx1-positive upper and lower Gb3Cer bands. a Mass
spectrum of Gb3Cer (see dotted rectangle in the inset). The molecular

ions are listed in Table 2. b MS/MS spectrum of Stx1-detected
Gb3Cer (d18:1, C16:0) with m/z 1046.67. The arrow denotes the
Gb3Cer precursor ion species selected for CID. B- and C-type ions are
marked with their corresponding m/z-values. c Molecular structure and
fragmentation scheme of Gb3Cer (d18:1, 16:0). The fragment ions are
listed in Table 3
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corresponding insets of Stx1-stained double bands of
Gb3Cer from HBMECs and EA.hy 926 cells are shown in
Figs. 6a and 7a, respectively. The main species in both
spectra correspond to [M+Na]+ molecular ions of Gb3Cer
(d18:1, C16:0) and Gb3Cer (d18:1, C24:1/C24:0), accom-
panied by minor ions of Gb3Cer (d18:1, C22:0). Addition-
ally, the corresponding protonated molecular ions of
Gb3Cer (d18:1, 16:0) and Gb3Cer (d18:1, C24:1/C24:0)
were detected in both spectra. According to the intensities
of immunostained bands, Gb3Cer species with C24:1/
C24:0 and C16:0 fatty acids were similarly distributed in
HBMECs (58 and 42%, respectively; see Fig. 6a), whereas
Gb3Cer variants containing C24:1/C24:0 fatty acids pre-
dominated over those with C16:0 fatty acids in EA.hy 926
cells (64 and 36%, respectively; see Fig. 7a).

To finally confirm the identity of Gb3Cer species as Stx1
receptors, the complete structural characterization was exem-
plified for the main species assigned to Gb3Cer (d18:1, C16:0)
and Gb3Cer (d18:1, C24:0) using CID tandem mass spectrom-
etry (Table 3). The MS/MS spectrum of Gb3Cer (d18:1,
C24:0) from HBMECs and the corresponding fragmentation
scheme are shown in Fig. 6b and c, respectively, and the MS/
MS spectrum of Gb3Cer (d18:1, C16:0) from EA.hy 926 cells
and the corresponding fragmentation scheme are shown in
Fig. 7b and c, respectively. The fragment ions originated from
the sodiated precursor ions at m/z 1158.82 (Fig. 6b and c) and
at m/z 1,046.67 (Fig. 7b and c) are assigned according to the
nomenclature of Domon and Costello [52, 53]. Full series of
Y- and Z-type and B- and C-type ions were obtained,
indicating the sequential loss of the three hexose moieties
from Gb3Cer. Additionally, the 0,2A2- and

0,2A3-ions, gener-
ated by ring cleavages, and the WII-ions, indicative for the
presence of 4-sphingenine (d18:1), give rise to the complete
structure of the Stx1 ligands Gb3Cer (Table 3).

Major molecular ions of the silica gel extracts of anti-
Gb4Cer positive GSL bands from HBMECs (see Fig. 5d)
demonstrated Gb4Cer species with ceramide moieties
containing 4-sphingenine (d18:1) and fatty acids with varying
fatty acid chain lengths C16:0, C22:0, and C24:1/C24:0 (data
not shown). No signals were obtained for Gb4Cer species in
EA.hy 926 cells (see Fig. 5d).

Discussion

In the present study we explored the molecular basis of
different sensitivities of HBMECs and EA.hy 926 cells to
the cytotoxic action of Stx1. Our report is the first detailed
comparative analysis showing that the differences in the
expression of Stx1-receptors correlate with low and high
Stx1-sensitivity of HBMECs and EA.hy 926 cells, respec-
tively. Loss of Gb4Cer synthase resulting in an concomitant
accumulation of Gb3Cer renders EA.hy 926 cells an
excellent target cell line for Stx1. Despite the fact that
HUVEC-derived EA.hy 926 cells exhibit a changed GSL-
profile compared to HUVECs, this human cell line
represents a superior tool for the investigation of the
cytotoxic potential of Stxs and their variants.

The enhanced expression of Stx1-receptor Gb3Cer in
EA.hy 926 cells, determined by immunofluorescence
microscopy and HPTLC immunodetection, represents the
most plausible reason for augmented sensitivity of EA.hy
926 cells. The fine characterization of Gb3Cer species by
nanoESI Q-TOF-MS revealed prevalence of Gb3Cer
species with C24-fatty acid in EA.hy 926 cells in
comparison to HBMECs. According to our current knowl-
edge one may wonder whether these quantitative and
qualitative differences in Gb3Cer expression can account

Table 3 Type of fragment ions and corresponding m/z-values of Stx1-detected major Gb3Cer species in HBMECs and EA.hy 926 cells

HBMECs EA.hy 926 cells

Gb3Cer (d18:1, C16:0)
m/z 1046.68

Gb3Cer (d18:1, C24:0)
m/z 1158.82

Gb3Cer (d18:1, C16:0)
m/z 1046.67

Gb3Cer (d18:1, C24:0)
m/z 1158.83

Fragment ions m/z values m/z values m/z values m/z values

0,2A2 305.09 305.08 305.09 305.11
0,2A3 467.17 467.15 467.17 467.20
Y0; Z0 560.52; 542.48 672.66; 654.65 560.51; 542.50 672.66; 654.66
Y1; Z1 722.55; 704.55 834.72; 816.70 722.57; 704.57 834.71; 816.70
Y2; Z2 884.62; 866.62 996.80; 978.79 884.61; 866.61 996.78; 978.78
B1; C1 185.05; 203.05 185.03; 203.04 185.06; 203.07 185.06; 203.07
B2; C2 347.11; 365.11 347.10; 365.11 347.11; 365.11 347.13; 365.13
B3; C3 509.17; 527.16 509.15; 527.17 509.16; 527.15 509.19; 527.19
WII 264.28 264.25 264.29 264.30
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for this important variation. However, the acquisition of
receptor details is fundamental to learn more about the
membrane architecture required for efficient binding and
uptake of the toxin. In addition, we have to gain insights
into the lipid and protein environment of the different
Gb3Cer species in order to explore the functional role of
ceramide variations in the Gb3Cer-mediated intracellular
trafficking and delivery of Stx1 to exert its toxic action.

Microvascular endothelial cells from the human brain
have been reported to be insensitive to Stx1 and to require
incubation with proinflammatory cytokines to overcome
this resistance [36–39]. Exposure to cytokines resulted in
increased Stx binding and Stx toxicity, which correlated
with augmented Gb3Cer content. In our hands, quiescent
HBMECs were found to moderately respond without
addition of cytokines. Different Stx1 susceptibilities have
been reported for various other types of endothelial cells
[54–56] and the principal association between the degree of
Stx sensitivity and amount of Gb3Cer is generally
recognized. Thus, enhanced expression of Gb3Cer appears
to be the main reason for the elevated susceptibility of EA.
hy 926 cells to Stx1 as compared to HBMECs. The
cytotoxicity studies in Fig. 3 suggest that there may be a
major Stx1-sensitive and a minor Stx1-resistant population
of EA.hy 926 cells. In fact the immunohistochemical
detection of Gb3Cer in EA.hy 926 cells (Fig. 2) indicates
a low number of Gb3Cer negative cells in the subconfluent
culture. The same phenomenon, i.e., a non-homogeneous
GSL-expression in pre-confluent cell cultures, has been
reported for the immunochemical detection of GM3 in
human fibroblasts by Rösner et al. [57]. Thus, a cell
density- and/or cell cycle-dependent expression could
explain the observed faint heterogeneity of Stx1-receptor
expression and cytotoxicity response in EA.hy 926 cells.

EA.hy 926 cells have been in culture for many
population doublings beyond the level at which primary
cells generally succumb to senescence. Because the lifetime
of HUVECs is limited and cell properties can change
during culture, this perpetual hybrid cell line offers
advantages and is commonly used as an equivalent to
HUVECs [24, 26, 27, 29]. A detailed previous investigation
demonstrated Gb4Cer and Gb3Cer as the most abundant
neutral GSLs in HUVECs accounting for 36% and 23% of
total neutral GSLs, respectively [33]. The lack of Gb4Cer
synthase along with the absence of Gb4Cer in EA.hy 926
cells result in accumulation of Gb3Cer (50% of total neutral
GSLs). We thus speculate that the loss of Gb4Cer synthase
must have occurred during fusion and/or the following
rearrangement of the chromosomes in hybrid EA.hy 926
cells. In any event, the enhanced expression of Gb3Cer
changes the HUVEC descendant into a highly Stx1-
sensitive cell line, but the truncated GSL pattern is no
longer typical of HUVECs.

The fatty acid chain of Gb3Cer influences the binding of
Stx [58]. C20:0 and C22:1 fatty acid containing Gb3Cer
have the greatest capacity to bind Stx1, and unsaturated
[59] or α-hydroxylated fatty acids [60] increased toxin
binding. However, neither C20:0 and C22:1 nor hydroxyl-
ated fatty acid substituted Gb3Cer species were detectable
in HBMECs and EA.hy 926 cells, which excludes their
specific involvement in Stx1 binding to these cell types.
Our study demonstrates almost equal amounts of long chain
C24:1/C24:0 (58%) versus short chain C16:0 fatty acids
(42%) in Gb3Cer species of HBMECs. The relative content
of long chain fatty acids was remarkably increased in EA.
hy 926 cells (64%) along with a decrease of short chain
fatty acids (36%). Gb3Cer species with saturated C24:0
fatty acid clearly predominated over those with unsaturated
C24:1 fatty acids in EA.hy 926 cells, whereas HBMECs
showed a balanced ratio of both. In view of these ceramide
heterogeneities, any difference between the cell lines might
be related to the differences in their susceptibility to Stx1.
Gb3Cer species with long chain fatty acids have in fact
been suggested being associated with greater toxicity,
because they possibly better mediate the localization of
internalized toxin to the endoplasmic reticulum [61].
Although the details are unknown, the differences in the
overall glycolipid composition of sensitive and resistant
cells expressing compositional identical Gb3Cer species
may also affect Gb3Cer recognition and the sorting route of
incorporated Stx1 as shown for Vero cells [62].

Within the cell membrane, GSLs are clustered as
membrane microdomains [63, 64] and function as attach-
ment platforms for host pathogens and their toxins [65].
Only GSLs that associate strongly with detergent-resistant
membrane microdomains appear to carry AB5 toxins from
the plasma membrane to the endoplasmic reticulum in a
retrograde fashion [66]. The association of Gb3Cer with
microdomains is required in HeLa cells for the retrograde
transport of Stx B-subunit [67]. Glucosylceramide has been
identified as a modulator of Stx-microdomain association
and as an essential requirement in the endoplasmic
reticulum for a cytotoxic effect [68], and functionally
different pools of Gb3Cer have been proposed to underlie
the cellular dynamics of Stx-mediated recruitment to
microdomains in HeLa cells [69]. Although the exact roles
of the ceramide heterogeneity of Gb3Cer and the involve-
ment of auxiliary glycolipids in Stx-mediated damage of
endothelial and many other cells remain to be elucidated,
we hypothesize a functional role of certain Gb3Cer species
that might provide a molecular basis for the different Stx1-
susceptibility of various cell types.

Infections caused by Stx-producing Escherichia coli
result in a spectrum of outcomes ranging from asymptom-
atic carriage to uncomplicated diarrhea, bloody diarrhea,
and the hemolytic uremic syndrome [2, 70]. Thus, an
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increasing knowledge about the molecular details of Stx-
receptors and their assembly in the plasma membrane is
important to better understand the pathways of intracellular
transport of Stx [66] and to develop preventive and
therapeutic measures for Stx-mediated diseases [71].
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